

POR PABLO CAPANNA

El humo de una vela que se apaga, o el de un cigarrillo que descansa en el cenicero, tienen un comportamiento que es tan intrigante para los físicos como inocente podría parecerle a cualquier otro. Lo mismo ocurre con una canilla que gotea, pero ésa es otra historia.

Si no hay corrientes de aire, el humo asciende durante unos cuantos centímetros formando una columna casi rectilínea, pero en un momento se forman complejos torbellinos y todo se dispersa en una impredecible turbulencia que parecería volverse aleatoria.

Estudiar fenómenos como éstos no es una cuestión ociosa; cualquiera se da cuenta de su importancia en temas tan prácticos como la hidráulica o la aerodinámica. Pero tratar de entender y determinar los procesos que implican es algo que les ha dado trabajo a grandes físicos y matemáticos, desde Lev Landau hasta la más reciente física de la complejidad.

Se diría que Michael Faraday (1791-1867), un gran científico que no tenía empacho en considerarse "iletrado" en matemáticas, de algún modo lo

MICHAEL FARADAY Y LA ELECTRICIDAD

El padre de la criatura

De todos los grandes científicos del siglo XIX, Faraday es probablemente el más curioso y el más presente en la vida cotidiana, ya que está en el origen, en el punto de partida mismo de la electricidad. Nacido en la pobreza, elevado a golpes de genio en la escala social, autor de las famosas conferencias de difusión de las ciencias a las que acudían obreros y artesanos, y en las que explicaba el mundo a partir del humo de una vela, Faraday fue un decidido empirista que tuvo aciertos teóricos e intuiciones (como el concepto de campo) que serían cruciales cien años más tarde. Cuando le preguntaban para qué sirve la ciencia, preguntaba a su vez: ¿y para qué sirve un bebé? Le debemos a él tanto el alumbrado como la silla eléctrica, las computadoras, las comunicaciones y la picana. Pero eso es lo que suele suceder con los bebés cuando crecen y reciben toda clase de influencias.

había intuido hace un siglo y medio. Faraday era divulgador por vocación, y fue uno de los primeros en acercar la ciencia al gran público. La *Historia Química de una Vela*, una de las charlas que dedicó a los niños, pasó a ser un clásico. Allí sostenía Faraday que en una vela que arde "no deja de estar comprometida ninguna de las leyes que gobiernan el universo. El fenómeno físico de una vela que arde es la puerta abierta que nos permite acceder al estudio de la filosofía natural".

UN PASADO ELECTRICO

Los físicos (y hasta algún electricista) conocen el faradio, la constante de Faraday, el efecto Faraday y la Jaula de Faraday. Los filatelistas, y aquellos que alguna vez tuvieron en sus manos un viejo billete de veinte libras, habrán visto su imagen.

Pero todos tendrán en su casa varios motores eléctricos o viajarán en autos provistos de dínamos y baterías, que hasta hace poco solían estar llenos de piezas cromadas. Estas son apenas algunas de las cosas que le debemos a Faraday, uno de los más grandes científicos experimentales de la historia, uno de los últimos empíricos y uno de los patriarcas de la electricidad.

El cielo de Hiparco

POR MARIANO RIBAS

esde hace dos milenios descansa sobre os hombros de un gigante de mármol. Es una esfera tallada con decenas de figuras en relieve, v varias líneas que se cruzan. Está a la vista de todos, en una sala de un museo italiano. Sin embargo, nunca nadie se dio cuenta de su inmenso valor: esa esfera es una copia fiel del legendario catálogo estelar de Hiparco. Fue el primer gran mapa de los cielos. Y parecía haberse perdido para siempre. Pero ahora ha sido rescatado por el oio atento. la astucia y la técnica de un reconocido arqueueoastrónomo norteamericano. Después de un larguísimo paréntesis, y de un modo curioso e inesperado, la humanidad ha recuperado una de las obras más extraordinarias de la astronomía antigua.

EL CARTOGRAFO ESTELAR

Desde todo punto de vista, Hiparco fue un innovador. En su época de gloria, entre los años 140 y 125 a.C., el gran astrónomo griego realizó una serie de aportes y descubrimientos verdaderamente revolucionarios. Calculó la duración del año con una precisión de seis en su experiencia. Pero siguió adelante. Fominutos; elaboró una ajustada teoría sobre los tografió al globo desde todos los ángulos po-

movimientos del Sol y la Luna en el cielo: v hasta descubrió una *nova* (una estrella que aumenta su luminosidad en forma repentina). Gracias a sus meticulosas observaciones a ojo limpio, Hiparco construyó la primera escala para clasificar y medir el brillo aparente de las estrellas: fue la base de la idea de magnitud estelar, que aún hoy siguen utilizando todos los astrónomos del mundo. Pero por sobre todo aquello hav dos hazañas científicas que le dieron la inmortalidad. Por un lado descubrió la "precesión". ese lento movimiento de bamboleo del eje terrestre que, a lo largo de los si-

de las estrellas. Y por el otro compiló el primer numental que describía la posición de un millar de estrellas, agrupadas en cuarenta constelaciones. En su momento, aquella obra fundacional de la astronomía se plasmó materialmente en algunos mapas esféricos (probablene mucho que ver con este asunto.

UN CIELO DE MARMOL

Pero, a principios de la era cristiana, casi mentarios, que describe las figuras de las y pidiéndoles una mano a programas informáconstelaciones). Y los únicos rastros que quedaron de aquella obra fundacional de la astro- y en cualquier época, Schaefer clavó la fecha: nomía fueron algunas referencias de otros au- ese cielo corresponde al año 125 antes de tores griegos, bastante posteriores (como el Cristo. Justo cuando vivió el protagonista de mismísimo Ptolomeo, del siglo II, que alude al su pálpito: "Estoy seguro de que aquel escultrabajo de Hiparco en su célebre *Almagesto*; tor griego copió uno de los legendarios globos Arato, del siglo III; y Eudoxo, del siglo IV). Bue- estelares de Hiparco", dijo el arqueueoastróno, en realidad no exactamente los únicos. Y nomo. Y emocionado agregó: "Es fascinante aquí entran en escena un investigador y una pensar que hemos recuperado una de las pieescultura. El investigador es Bradley Schae- zas más famosas de la sabiduría antigua". fer, un físico y astrónomo estadounidense de Schaefer hizo su espectacular anuncio duranla Universidad de Louisiana, mundialmente rete el último encuentro de la American Astroconocido por sus trabajos en el moderno y pronomical Society, celebrado en San Diego, Cametedor campo de la arqueueo astronomía. La lifornia. Y publicará un extenso informe sobre escultura es el Atlas Farnesio, una impresio- toda su investigación en el número de mayo nante estatua romana del siglo II, de más de del Journal for the History of Astronomy. gún los historiadores del arte, la pieza es una ha regresado.

copia de un original griego. Cual fiel representación del mítico Atlas, el gigante de mármol carga sobre sus hombros con todo el firmamento representado por una esfera de 63 centímetros de diámetro. En su superficie están talladas las figuras que corresponden a 41 constelaciones griegas y, también, las líneas que representan el Ecuador y los trópicos celestes, la eclíptica (la zona del cielo que recorren el Sol, la Luna y los planetas) y algunos meridianos. Lo cierto es que, hasta ahora, nadie se había detenido a analizar en detalle esa representación celestial. Pero Schaefer lo hizo, y lo que descubrió fue asombroso.

LA MARCA DEL ASTRONOMO

Desde hace años que Schaefer se dedica a estudiar la historia y los orígenes de las constelaciones, esas caprichosas agrupaciones de estrellas que cada pueblo de la antigüedad imaginó a su modo, reflejando su cultura, sus mitos y hasta sus objetos cotidianos. No es raro, entonces, que haya viajado hasta el Museo de Nápoles para echarle una profunda mirada al poderoso Atlas Farnesio. A poco de observarlo, Schaefer tuvo un pálpito basado sibles, tomó como refe-

> rencia setenta puntos especialmente elegidos de su superficie, y luego combinó todas las imágenes mediante técnicas de computación. Así obtuvo un modelo muy preciso de la añeja esfera celese. Miró, pensó y llegó a una serie de conclusiones. Por empezar, notó que las posiciones de las constelaciones, unas con respecto a otras, eran sumamente precisas (con un error no mayor a los 3,5º en promedio). Y de ahí dedujo que el escultor griego original no sólo se había dedicado con mucho esmero al tallado de las figuras sino que, orzosamente, debía ha-

glos, provoca ligeros cambios en la ubicación ber copiado fielmente un auténtico mapa celeste. Y ese mapa celeste llevaba la marca de catálogo celeste de la historia, un trabajo mo- un astrónomo. No había otra manera de ex-

LA REVELACION

Sí, el pálpito estaba, pero todavía faltaba un punto crucial: fechar el mapa con la mayor mente hechos por el propio Hiparco). Y eso tie- exactitud posible. Y para eso había que tener en cuenta, justamente, la dichosa precesión. Tomando en cuenta sus efectos sobre las posiciones de las constelaciones a lo largo de los siglos y milenios, las ubicaciones que ocutodo se perdió (sólo se conservó el libro *Co-* paban en el globo celeste del *Atlas Farnesio*,

dos metros de altura, expuesta en el Museo Escapando a las tinieblas del tiempo y la le-Arqueológico Nacional de Nápoles, Italia. Seyenda, el mítico cielo de Hiparco, finalmente,

El padre...

No todo lo que hizo Faraday es tecnología. Si bien permitió que Edison pusiera en marcha sus fábricas de patentes, la obra experimental de Faraday le sirvió a Maxwell para desarrollar trabaios teóricos fundamentales que llegaron a poner en jaque al paradigma newtoniano. Su concepción de las "líneas de fuerza", resistida por los físicos de su tiempo, fue la base sobre la cual William Thomson (Lord Kelvin) desarrolló la teoría del campo electromagnético, que puso en marcha toda una revolución científica.

A mediados del siglo XIX Faraday propuso audazmente relacionar la gravedad y el electromagnetismo. Si bien entonces nadie lo acompañó, setenta años más tarde Einstein iba a darle la razón Faraday fue posiblemente el último empírico de la ciencia moderna, un hombre que carecía de toda educación formal y confesaba su ignorancia en matemáticas, al punto de admitir que "no había entendido nada" en las obras de Ampère.

demanianos, una austera secta fundamentalista a años después. la cual siguió perteneciendo durante toda su vida. clero y todos los adultos tenían que predicar.

to sandemaniano fue para ir a tomar el té con la alguien lo acusó de robarle ideas a su maestro. reina Victoria al Palacio de Buckingham, en una sirvieron de nada y tuvo que hacer grandes méri- nes en la Royal Institution (una costumbre que aún tos para que la comunidad le levantara la suspen- sigue) y sus charlas de Navidad para los niños, hassión que le había impuesto.

A los trece comenzó a trabaiar como mandadetrumentos caseros.

Un día de 1813, un cliente agradecido le regaria sus últimos años. ló unas entradas de favor que le permitieron ir a escuchar las últimas cuatro conferencias de un ciclo que estaba dictando Humphrey Davy, el quí- OBSTINADO RIGOR mico que tenía en su haber el descubrimiento de

tretenerse") y el "vulgar", que se toma el trabajo de pensar. El joven Michael, que no era nada vulgar y pensaba todo el tiempo, tomó gran cantidad de notas e hizo todas las preguntas que cabían. Harto de trabajar en la librería, se atrevió a presentarse ante Davy para pedirle empleo como ayudante de laboratorio. El químico, que al principio quiso desalentarlo diciendo que para quien no contara con recursos económicos la ciencia era "una amante cruel", terminó por aceptarlo.

Un tiempo más tarde se lo llevó por toda Europa, y aunque la esposa del químico se empeñó en tratarlo todo el tiempo como si fuese su mucamo, pudo visitar Francia, Italia, Suiza y Bélgica, y tratar con los mayores científicos vivientes. En Francia conoció a Ampère. También fue allí donde ayudó a Davy a licuar el cloro por primera vez e inventar la lámpara de seguridad que les salvaría la vida a muchos mineros. Ese viaje fue para Faraday el equivalente de la universidad que no había tenido.

En los años que dedicó a la química, Faraday fue el primero en aislar el benceno y desarrolló la técnica de la electrólisis, para la cual no dejó de enunciar dos leyes. Luego se internó en el campo de la electricidad, y allí fue como descubrió la inducción electromagnética. Si Oers-

COMO LOS GRANDES PROTAGONISTAS DE LA HISTORIA. FARADAY TAMBIEN TIENE SU BILLETE.

ted y Ampère habían obtenido magnetismo de la electricidad, por qué no obtener electricidad del Era hijo de un herrero, y desde muy temprano magnetismo? Su investigación lo llevó a inventar había tenido que salir a ganarse la vida. Aprendió el motor eléctrico (1821) y la dínamo (1831), cua leer y escribir en la escuela dominical de los San- yas aplicaciones prácticas se descubrió muchos

Cuando fue elegido miembro de la Royal So-Allí conoció a su mujer, formó su familia y fue aclaciety, Davy (que entonces la presidía) votó en conmado como predicador. La congregación no tenía tra de Faraday, porque no se resignaba a verlo como otra cosa que su ayudante. Un malentendido La única vez que faltó a una celebración del cul- contribuyó a distanciarlos, en el momento en que

> Abandonó la investigación en 1855, pero siguió ta que la mala salud y la senilidad se lo impidieron.

En 1864, la reina le ofreció la presidencia de la ro y aprendiz de encuadernador en el taller de un Royal Institution (el cargo que había tenido Newbibliotecario. Se pasó siete años leyendo los libros ton) y un título de nobleza. Rechazó ambos hoque le daban para encuadernar, atraído especial- nores diciendo que si aceptaba no estaba en conmente por los que trataban de electricidad. Como diciones de responder por su integridad intelecera un hábil dibujante, copiaba las ilustraciones y tual por menos de un año: prefería seguir siendo luego intentaba realizar las experiencias con ins- plebeyo. Lo único que aceptó fue una pequeña

Murió cuando dormía, como Pasteur.

nada menos que doce elementos de la tabla. En fo, el físico John Tyndall, no supo hacer nada de le dedicó al arte de la conferencia, Faraday dis- do escribió que el fuego que lo animaba era co- estaba obligado a serlo. tinguía entre el público educado (que "desea en- mo el de un combustible sólido, que se quema

época en que ya era famoso. Sus disculpas no le dictando sus tradicionales conferencias de los vier- lentamente, y no como el de un gas, que se ago- los fraudes de los médium, y logró convencer al ta en un efímero fogonazo.

Había comenzado fabricando sus propios instrumentos, y recién dispuso de adecuados labora- nos en cuanto al triunfo de la ciencia (sus creentorios cuando se incorporó a la Royal Institution. cias hacían que reservara la verdad última para Era sumamente metódico, y sus cuatro volúmeDios), creía firmemente en la unidad de las fuernes de investigaciones muestran el rigor con el que zas que iba descubriendo, tanto en su trabajo extrabajaba: uno de ellos consta de 16.041 párrafos perimental como en el teórico. Como buen físico numerados y vinculados entre sí; casi lo que hoy clásico, decía que "la belleza de la electricidad no llamaríamos un hipertexto.

pensión v la casa de Hampton Court donde pasa- gos; de hecho, su amigo William Whewell recién Su personalidad no ofrecía rasgos de disociaacababa de inventar el término "científico" para ción: podía ser tanto un predicador de la física, designar a aquellos que todavía eran llamados "fi- que diseñaba minuciosamente cada una de las exlósofos naturales". Sin embargo, Faraday tenía su periencias con que iba a ilustrar sus charlas, como propia epistemología. Alguna vez dijo que si la un conferencista bíblico, que era capaz de buscar Faraday era un trabajador obsesivo. Su biógra- ciencia quería avanzar tenía que ser republicana una cita durante horas. (esto es, democrática), y admitió que aunque él no Fue uno de los primeros (si no el primero) de las sabrosas acotaciones que muchos años más tar- mejor que recurrir a la metáfora química cuan- era republicano en política, cuando hacía ciencia los científicos modernos que se sintió obligado a

cuántas ideas y teorías tiene que sa- momento meter un chiste.

Vivió en un mundo en el cual la Nunca lucró con las aplicaciones de sus descula Politécnica. Sus trabajos atraje- encontraron.

nética, Faraday replicó con aquello caciones.

enseña en la primaria, y lo segundo se comprueba con sólo mirar las facturas.

DE PREDICADOR A CONFERENCIANTE

Faraday nunca sintió el menor conflicto entre sus creencias religiosas y su práctica científica, entre la exégesis de la Biblia y el desciframiento del libro de la naturaleza. Tyndall, que era agnóstico, no dejaba de observar que Faraday parecía recuperar energías cada vez que volvía del culto dominical.

Es que el físico experimental era la misma persona que asistía a los enfermos y a los pobres de su comunidad, y predicaba regularmente en el culto. Sus Exhortaciones, que más tarde fueron publicadas, le hicieron decir a Gladstone que "si el mundo había perdido a un sabio, el cielo había ganado un santo".

Para quien se lo esté imaginando como una suerte de testigo de Jehová, dogmático y proselitista, Tyndall atestiguaba que en quince años de amistad Faraday jamás le había hablado de religión, que era sumamente respetuoso de las creencias ajenas y que no buscaba la confrontación. En estos tiempos en que el fascismo se ha trivializado y abunda la violencia verbal, uno no deja de extrañar aquella tolerancia victoriana.

Pero Faraday tampoco era un ingenuo. En 1854, cuando estaba en pleno auge el espiritismo, a cuya fascinación sucumbía gente como Russell Wallace y Crookes, Faraday dio una conferencia para refutar las pretensiones y denunciar propio príncipe Alberto.

Si bien no era tan optimista como los victoriaestá en que tenga un carácter misterioso, sino en En su tiempo aún no existían los epistemólo- el hecho de que está sujeta a leyes".

poner sus descubrimientos al alcance de un am-A su discípulo, el físico William Crookes, le dio plio público, lo cual lo convierte de algún modo como regla "Trabaja. Corrige. Publi- en el patriarca de los divulgadores.

> ca", que es todo un programa. En Las notas en las cuales recogió su experiencia cuanto a la metodología, reconocía como conferencista son tan minuciosas como lo que de todas las expectativas, deseos era su metodología de laboratorio. Faraday no dey conclusiones apresuradas que el jaba detalle sin planificar, desde la postura física científico baraja, sólo la décima par- del disertante hasta la cuidadosa preparación de te logra rescatarse en el producto fi- los aparatos que iba a usar; hasta llegaba a sugerir nal. "El mundo ignora -escribió- qué hacer cuando las experiencias fallan, o en qué

> crificar en silencio un investigador, Uno de aquellos consejos merecería ser seguido sometiendo a la crítica su propia obra por muchos profesores, disertantes, panelistas y y examinando los hechos." Si le hu- hasta opinadores mediáticos, en el supuesto de que bieran hecho caso, el mundo se hu- estos últimos tuvieran tiempo y ganas de pensar. biera salvado de muchos papers irre- Faraday recomendaba "no amontonar razones y levantes, con el consiguiente ahorro argumentos como si fueran ladrillos, sino desplegarlos como si fueran las ramas de un árbol

> ciencia ya comenzaba a tener reco- brimientos, aunque no dejó de soñar con barcos nocimiento social y político, des- y trenes eléctricos. Tan romántico como Pasteur, de que Napoleón había condeco- más que creer en la "ciencia aplicada" creía en las rado a Volta e impulsado la Escue- aplicaciones de la ciencia. Otros fueron los que las

> ron la atención de los poderosos, En su biografía, Tyndall rescató otra metáfora desde la reina Victoria hasta el canquímica que era muy grata a Faraday. El físico ciller Gladstone y el primer minis- acostumbraba a llamar la atención sobre el hecho de que cuando el agua cristaliza excluye de sí to-Cuando Peel le preguntó, con urdas las impurezas, como ácidos, álcalis o sales. Fagencia pragmática, para qué (dia- raday aspiraba a que sus descubrimientos decanblos) servía la inducción electromag- taran en ciencia pura, más allá de las exitosas apli-

> de "¿Para qué sirve un niño recién La electricidad que él nos enseñó a domar era tan nacido?". Pero cuando Gladstone le ambigua como todas las fuerzas conocidas, incluido hizo la misma pregunta fue más iró- el poder: nos iba a dar tanto el alumbrado como la nico. Le contestó que todavía no es- silla eléctrica, las computadoras y las alambradas electaba seguro, pero casi con seguridad trificadas, las comunicaciones y la picana. Pero eso pronto tendría que gravarla con al- es lo que suele suceder con los niños recién nacidos, gún impuesto. Lo primero hoy se cuando crecen y reciben toda clase de influencias.

NOVEDADES EN CIENCIA

CRIMEN PERFECTO

tro y socialmente insoportable; Einstein, un romántico empedernido, y Kepler, ¿un asesino? A 404 años del supuesto crimen, así lo cree ciones de mercurio y arsénico. el escritor norteamericano Joshua Gilder, que en su reciente libro Heavenly Intrigue (Intriga temático v astrónomo austríaco

que vivió entre los años 1571 y 1630. v lo acusa sin piedad de haber matado en octubre de 1601 ni más ni menos que a su maestro, Tycho Brahe.

Según Gilder, el modus operandi consistió en contaminar sigilosamente la comida del matemático danés con mercurio. El móvil o excusa: la ambición de Kepler por poseer los documen-

tos de Brahe, esenciales para sus descubrimientos posteriores. Gilder basa su hipótesis en una supuesta carta escrita por Kepler en 1605 al astrólogo inglés Christopher Heydon en la que reconoce la apropiación indebida del legado de Brahe (Kepler dice haber aprovechado el duelo v la ignorancia de los herederos de Brahe para asegurarse los papeles de pero con un crimen a cuestas.

Newton era misógino, al- su maestro). Sin embargo, la evidencia clave quimista de puertas aden- no es esa: la prueba más fuerte, asegura Gilder, es el análisis químico de los pelos de la barba de Brahe que indican altas concentra-

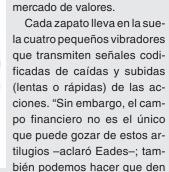
Kepler había conocido a Brahe hacía un año. en febrero de 1600, cuando fue expulsado de celestial) se despacha contra el célebre ma-

> testante. La química intelectual entre ellos prendió de inmediato. v meses más tarde el matemático imperial va tenía un fiel avudante v discípulo, capaz de completar e interpretar los registros de datos astronómicos del científico danés. Después de 1601, y con las

anotaciones v descubrimientos de Brahe en su poder, Kepler lo sucedió como el científico (y astrólogo) principal de la corte del

emperador Rodolfo II y en sus ratos libres se dedicó a esbozar sus famosas "Leves de Kepler" (en 1609, publicadas en su obra Astronomia Nova) y su libro Harmonius Mundi (en 1619), que permitieron entre otras cosas comprender los movimientos de los planetas alrededor del Sol, sin sospechas, sin evidencias,

BUENAS VIBRACIONES


SCIENTIFIC Desde que Maxwell Smart, o AMERICAN sea, el famoso superagente 86, hiciera famoso su zapatófono (obvio predecesor del ubicuo celular), la industria del calzado a teléfonos celulares conectados inalámbricano descansó ni un día para hallar el accesorio mente (y en directo) al Centro Australiano de ideal, ese toque de distinción tecnológica, ese Información de la Bolsa de Valores para ac-

no sé qué de diferente que despeque a sus productos del siempre cambiante mundo textil. Por eso, el último invento de un grupo de investigadores australianos del National ICT (un consorcio de universidades y departamentos gubernamentales) no peca de ser altamente disparatado: se trata de un peculiar par de zapatos capaz de vibrar ante la suba o el desplome de los

precios de acciones cotizadas en bolsa. "El diseño, en realidad, es sólo una excusa para mostrar a la gente que podemos transmitir información no sólo a través de computadoras y pantallas", comentó el profesor Peter Eades.

Podrían haber utilizado calor o hacerlos aptos para producir un aroma especial, dicen, pero prefirieron adosarles vibradores en base

ceder a las fluctuaciones del mercado de valores.

cuenta sobre el marcador de un partido de

Todo sea por estar bien informados y no quedarse afuera de los últimos acontecimientos que sacuden el mundo.

IMAGEN DE LA SEMANA

Las sondas Voyager I y II pueden haberse lucido al fotografiar -por primera vez de cerca- a Saturno, pero evidentemente de ahora en más no tienen nada que hacer frente al trabajo realizado por la nave Cassini: las imágenes de los anillos del gran planeta gaseoso tomadas por la nave de la NASA y la ESA son, se mire por donde se las mire, majestuosas y únicas. De abajo, de arriba, de costado, la Cassini no se cansa de retratar al espléndido Saturno, sin olvidar a su cohorte de lunas que le ofrece siempre buena compañía.

FINAL DE JUEGO

POR LEONARDO MOLEDO

-Bueno -dijo el Comisario Inspector-. Hemos recibido una larga carta de Alejandro Satz, viejo amigo de esta columna, sobre el problema de la teoría y la empiria, que sería bueno publicar completa, aunque nos cueste casi todo el espacio. Y con la salvedad de que agregamos los acentos y las eñes:

Mis afectuosos saludos al Comisario y a Kuhn después de varios meses, o tal vez años, de silencio. La sagacidad detectivesca del Comisario no dejará de notar la ausencia de eñes y acentos en esta carta, y deducirá certeramente que fue escrita desde un país extranjero. Cotejando con la dirección de mail del remitente, hará bien en extraer la conclusión de que estoy realizando un doctorado en la Universidad de Nottingham, pese a lo cual no renuncio a la lectura online del suplemento Futuro, y las siempre disfrutables discusiones de esta columna.

La dicotomía "teoría o empiria" me parece basada en la representación cartesiana de la mente como ámbito privado del sujeto divorciado del cuerpo; no por nada corre junto a ésta a lo largo de toda la filosofía moderna. La pregunta sería si este sujeto "conoce" el mundo fundamentalmente a través de "datos" que le entran por los sentidos, o a través de "conceptos", ya sea innatos o generados culturalmente. Pero me parece que si reemplazamos la imagen cartesiana por una científica, veremos que la dicotomía es vaga, y en tanto formulable con precisión su respuesta será algo para descubrir mediante el estudio científico del cerebro y no la discusión filosófica abstracta. Kuhn señala correctamente que teoría o empiria, en última instancia nuestra vida mental debe ser pasible de una descripción en términos neuronales. Pero tanto su interpretación de los procesos neuronales como "datos" como la respuesta del Comisario de que requieren una "síntesis teórica" consisten en una confusión de niveles, o de lenguajes teóricos: la distinción tajante entre datos y conceptos es razonable para el modelo cartesiano de la mente, pero no se aplica muy bien a un conjunto de excitaciones neuronales.

¿En qué deviene entonces la pregunta "teoría o empiria"? En la medida en que reasignemos un significado a estos viejos conceptos dentro de esta nueva visión, significa la pregunta por si la estructura del producto final "conocimiento" depende más básicamente del carácter original del estímulo o de la estructura de patrones y disposiciones a generar patrones que preexistía en el cerebro. Es obvio que depende de ambos, y que no hay una respuesta simple que se pueda encontrar en una discusión filosófica sino que hay una respuesta muy compleja que es encontrable (en principio) mediante el avance de la neuropsicología. También ocurrirá seguramente que la "estructura teórica" del cerebro es plástica y capaz de modificarse casi infinitamente ante nuevos estímulos. Si hay algún patrón global que es inmodificable, esto corresponderá aproximadamente a los a priori kantianos; pero me parece muy dudoso que sea así. Pero esto no les da la razón a los empiristas, porque cada estímulo particular se "procesa" en una estructura cerebral compleja que podríamos llamar, poniendo énfasis en las comillas, "conceptual" o "teórica". Saludos, Alejandro Satz

-Sencillo el enigma -dijo el Comisario Inspector-. En el primer párrafo, Alejandro Satz comete un error garrafal. ¿En qué consiste?

¿Qué piensan nuestros lectores? ¿Están de acuerdo con Alejandro Satz?

> MENSAJES A FUTURO futuro@pagina12.com.ar

FRAGMENTOS

L JUICIO FINAL

POR PAUL DAVIES

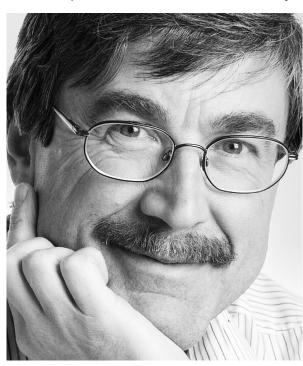
echa: 21 de agosto de 2126. Día del juicio final. Lugar: La Tierra. Por todo el planeta, la población desesperada intenta guarecerse. Hay miles de millones de personas que no tienen dónde ir. Unos huven bajo la tierra, buscando desesperadamente cuevas y minas abandonadas, o se hacen a la mar en submarinos. Otros lo destrozan todo a su paso, mortíferos y despreciativos. La gran mayoría espera sentada, cariacontecida y perpleja, esperando el final. En lo alto del cielo, hay grabado un rayo de luz en el azul del cielo. Lo que empezó siendo un estrecho trazo de blanda nebulosidad radiante ha crecido día a día hasta formar un vórtice de gas que hierve en el vacío del espacio. En el vértice de ese rastro de vapor yace un pegote oscuro, informe y amenazante. La diminuta cabeza del cometa contrasta con su enorme poder destructivo. Se acerca al planeta Tierra a la asombrosa velocidad de 65.000 kilómetros por hora, 18 kilómetros por segundo: un billón de toneladas de hielo y piedra destinados a estrellarse a setenta veces la velocidad del sonido.

La humanidad sólo puede mirar y esperar. Los científicos, que han abandonado hace tiempo sus telescopios a la vista de lo inevitable, apagan silenciosamente los ordenadores. Las inacabables simulacio-

nes del desastre siguen siendo demasiado inciertas y las conclusiones que obtienen son, en cualquier caso, demasiado alarmantes como para darlas a conocer públicamente. Algunos científicos han elaborado complejas estrategias de supervivencia utilizando sus conocimientos técnicos para sacar ventaja a sus conciudadanos. Otros tienen pensado observar el cataclismo lo más cuidadosamente posible, cumpliendo su papel de verdaderos científicos hasta el mismísimo fin, transmitiendo datos a las cápsulas profundamente enterradas. Para la pos-

Se acerca el momento del impacto. En todo el mundo, millones de personas comprueban nerviosamente sus relojes. Los últimos tres minutos. Justo por encima del nivel de la tierra, se abren los cielos. Mil kilómetros cúbicos de aire se abren. Un brazo de llamas abrasadoras más ancho que una ciudad se arquea hacia abajo y quince segundos después alancea a la Tierra. El planeta se estremece con la fuerza de diez mil terremotos. Una on-

da de choque de aire desplazado barre la superficie del globo, aplastando cualquier estructura, pulverizándolo todo a su paso. El terreno plano en torno al punto del impacto se yergue formando una corona de montañas líquidas de varios kilómetros de alto, exponiendo las entrañas de la Tierra en un cráter de cientos de kilómetros de diámetro.


Dentro del propio cráter, billones de toneladas de rocas se vaporizan. Buena parte de ellas salen más aún saltan atravesando medio continente para llover a cientos o incluso miles de kilómetros de distancia, sembrando la destrucción generalizada a todo lo que hay por debajo. Alguno de los materiales fundidos y despedidos caen sobre el océano, originando gigantescos tsunamis que contribuyen al caos creciente. A la atmósfera llega una gran columna de restos pulverulentos, impidiendo el paso de la luz solar sobre todo el planeta. La luz del sol se ve sustituida por un relumbre siniestro y parpadeante de miles de millones de meteoritos que queman la tierra con su calor abrasador, mientras el material desplazado va cayendo hacia la atmósfera desde el espacio.

Este panorama se basa en la predicción de que el cometa Swift-Tuttle chocará con la Tierra el 21 de agosto de 2126. De ser así, seguirá una devastación global sin duda alguna, que destruirá la civilización humana. Cuando este cometa nos visitó en 1993, los primeros cálculos parecían indicar que la colisión de 2126 era posibilidad clara. Desde entonces, los cálculos revisados indican que el cometa no golpeará la Tierra: estará cerca, pero podemos respirar tranquilos. Con todo, el peligro no desaparecerá por completo. Antes o después, el

Swift-Tuttle u otro objeto similar chocará con la rra (cuatro mil quinientos millones de años). Tierra. Las estimaciones indican que existen unos 10.000 objetos de medio kilómetro de diámetro o más que se mueven en órbitas que intersectan la de la Tierra. Estos intrusos astronómicos se originan en las frías regiones exteriores del sistema solar. (...)

Muchos de estos objetos son capaces de causar más daños que todas las armas nucleares del mundo juntas. Es una mera cuestión de tiempo que alguno nos golpee. Mala noticia para nosotros si se produce tal cosa. La historia de nuestra especie se interrumpirá abruptamente, cosa que no ha ocurrido nunca. Pero para la Tierra se tratará de un suceso más o menos habitual. Los impactos cometarios o de asteroides de esta magnitud se dan, como media, cada pocos millones de años. Generalmente se cree que uno o más de tales sucesos fueron los causantes de la extinción de los dinosaurios hace sesenta y cinco millones de años. La próxima vez podría tocarnos a nosotros. (...)

Desde luego que hay montones de cosas desagradables que podrían pasarle a la Tierra, un objeto perdido en un universo recorrido por violentas fuerzas, aunque nuestro planeta ha seguido siendo hospitalario para la vida por lo menos durante tres mil quinientos millones de años. El secreto de nuestro éxito sobre el planeta Tierra es el propio espacio. Hay mucho. Nuestro sistema solar es una isla

diminuta en un océano de vacío. La estrella más la Tierra se vaya volviendo inhóspita poco a poco. cercana, aparte del Sol, queda a más de cuatro años luz. Para hacernos una idea de lo lejos que es eso, pensemos que la luz recorre los más de 149 millones de kilómetros que nos separan del Sol en sólo ocho minutos y medio. En cuatro años recorre más de 32 billones de kilómetros.

El Sol es una estrella enana normal que se encuentra en una región normal de nuestra galaxia, despedidas, algunas proyectadas al espacio. Pero la Vía Láctea. La galaxia alberga aproximadamente cien mil millones de estrellas, que varían en masa desde un pequeño porcentaje de la masa solar hasta cien veces la masa del Sol. Estos objetos, así como una enorme cantidad de nubes de gas y polvo y un número indeterminado de cometas, asteroides, planetas y agujeros negros orbitan lentamente en torno al centro galáctico. Esa inmensa colección de objetos puede producir la impresión de que nuestra galaxia es un sistema sumamente poblado, hasta que se cae en la cuenta de que la parte visible de la Vía Láctea mide aproximadamente cien mil años luz de diámetro. (...)

Por lo que sabemos, la Vía Láctea no tiene nada de excepcional. A unos dos millones de años luz se encuentra otra galaxia parecida, llamada Andrómeda, en dirección a la constelación del mismo nombre. Puede verse a simple vista como un borrón de luz. El universo observable se ve adornado por muchos miles de millones de galaxias, espirales algunas de ellas, otras elípticas o irregulares. La escala de distancias es amplísima. Los telescopios potentes pueden resolver galaxias individuales que se encuentren a varios miles de millones de años luz. En algunos casos, su luz ha tardado en llegarnos más que la edad que tiene la Tie-

Todo este espacio significa que las colisiones cósmicas son raras. La mayor amenaza para la Tierra seguramente procede de nuestro propio entorno. Los asteroides normalmente no orbitan cerca de la Tierra; están generalmente confinados al cinturón que queda entre Marte y Júpiter. Pero la enorme masa de Júpiter puede perturbar las órbitas de los asteroides, impulsando a alguno de ellos hacia el Sol de tanto en tanto y amenazando así la Tierra.

Los cometas plantean otra amenaza. Se cree que estos cuerpos espectaculares se originan en una nube invisible situada a un año luz del Sol. En este caso la amenaza no proviene de Júpiter, sino de las estrellas que pasan cerca. La galaxia no es estática, sino que rota lentamente, al igual que sus estrellas orbitan en torno al núcleo galáctico. El Sol y su pequeño cortejo de planetas tardan unos doscientos millones de años en completar una vuelta completa a la galaxia y en ese tiempo corren múltiples aventuras. Las estrellas cercanas pueden rozar la nube de cometas, desplazando a unos pocos hacia el Sol. Cuando los cometas se meten en el sistema solar interior el Sol evapora parte de sus materiales volátiles y el viento solar los dispersa formando un largo rastro, la famosa cola de los cometas. Muy de vez en cuando, un cometa colisiona con la Tierra a su paso por el interior del sistema solar. Es el cometa

> el que produce el daño, pero la estrella es la responsable última. Afortunadamente, las inmensas distancias entre las estrellas impiden que se produzca un número excesivo de tales encuentros.

> También pueden cruzarse con nosotros otros objetos que viajen en torno a la galaxia. Las nubes gigantes de gas derivan lentamente y aunque son más tenues que cualquier vacío creado en laboratorio pueden alterar drásticamente el viento solar y afectar el flujo de calor que nos llega del Sol. Otros objetos más siniestros pueden acechar en las tenebrosas profundidades del espacio: planetas solitarios, estrellas de neutrones, enanas marrones, agujeros negros: todos estos y muchos más podrían aparecer sin anunciarse, sin ser vistos y sembrar estragos en el sistema solar. (...)

A la mayor parte de la gente le fascina la perspectiva del Día del Juicio Final: una destrucción súbita y espectacular del mundo. Pero la muerte violenta es una amenaza menor que la lenta decadencia. Hay muchas maneras de que

La degradación ecológica paulatina, el cambio climático, cualquier pequeña variación en la emisión calorífica del Sol: todas estas cosas pueden amenazar nuestra comodidad, cuando no nuestra supervivencia, sobre nuestro frágil planeta. Sin embargo, algunos cambios se producirán a lo largo de miles de años, o incluso de millones, y la humanidad puede ser capaz de afrontarlos por medio de una tecnología avanzada. Por ejemplo, el inicio gradual de una edad de hielo no supondría el desastre total para nuestra especie, teniendo el tiempo suficiente para reorganizar nuestras actividades. Podemos conjeturar que la tecnología seguirá avanzando espectacularmente a lo largo de los próximos milenios; de ser así, es tentador creer que los seres humanos, o sus descendientes, dispondrán del control de sistemas físicos cada vez mayores y que pueden llegar a un momento en que sepan eludir desastres incluso a escala astronómica.

En principio, ¿puede la humanidad sobrevivir para siempre? Puede ser. Pero ya veremos que la inmortalidad no resulta fácil y que podría resultar que fuera imposible. El propio universo está sujeto a leyes físicas que le imponen un ciclo vital propio: nacimiento, evolución y, quizá, muerte. Nuestro propio destino está inextricablemente unido al destino de las estrellas.

El australiano Paul Davies es físico, escritor y profesor de filosofia natural en el Centro de Astrobiología de la Universidad MacQuarie (Sydney). Entre sus obras más destacadas figuran Los últimos tres minutos (conjeturas acerca del destino final del Universo), La mente de Dios y ¿Cómo construir una máquina del tiempo?