

ENTREVISTA AL DOCTOR ANTHONY COLAPRETE (NASA), PRINCIPAL INVESTIGADOR DE LA MISION LCROSS

Y al final, tal como muchos sospechaban, la Luna tiene agua. Agua congelada y muy bien escondida, encastrada en los gélidos y polvorientos pisos de sus cráteres polares. Lugares donde la noche es eterna y las temperaturas están siempre por debajo de los 200 grados bajo cero.

El agua...

POR MARIANO RIBAS

ace varios meses, aquí mismo, comenzamos a hablar de la misión Lcross de la NASA (ver Futuro 27/6/09), esa suerte de kamikaze lunar cuyo objetivo central era, precisamente, demostrar, de una buena vez, que ciertos pálpitos de la geología planetaria estaban muy bien encaminados. Porque al igual que sus vecinos -la Tierra incluida-, la pobre Luna fue duramente castigada por el impacto de asteroides y cometas a lo largo de miles de millones de años, y muy especialmente en sus comienzos. Y parte de los materiales de aquellos proyectiles cósmicos, y muy específicamente agua congelada (que forma buena parte del cuerpo de los cometas), aún podría estar en ciertos y muy específicos lugares de la superficie selenita.

Y está: en la mañana del 9 de octubre, el cohete Centauro de la misión Lcross, con sus más de dos toneladas, se estrelló a más de 9000 km/hora contra el piso de un cráter muy cercano al Polo Sur selenita. Y en cuestión de segundos, abrió un nuevo cráter de 20 metros, levantando una nube de escombros que fue inmediatamente analizada por la "nave madre" del dúo (que le seguía el rastro muy de cerca, y que, minutos más tarde, también impactaría contra la Luna). Esos pocos minutos de observación, transmitidos a la Tierra "en vivo", fueron suficientes para acumular pilas de datos que, poco a poco, fueron desmenuzados y digeridos por los expectantes científicos de Lcross (que, es hora de aclararlo, es la sigla de Lunar Crater Observation and Sensing Satellite). Finalmente, a mediados de este mes, y en una muy anunciada conferencia de prensa, se conoció el veredicto. Y la noticia dio la vuelta al mundo como un ravo.

Ahora que los fuegos artificiales mediáticos ya se han apagado (y que, por qué no decirlo, aportaron confusión, y trivializaron el tema) es tiempo verdadera y profunda dimensión. Conocer detalles y antecedentes. Y por supuesto, pensar en las implicancias de este importantísimo descubrimiento científico. Y también, claro, asomarse a lo que vendrá. Qué mejor, entonces, que conversar de primera mano con el doctor Anthony Colaprete (Ames Research Center, NASA), principal investigador de la misión Lcross.

-Empecemos de cero: ¿Cuándo comenzó a hablarse de la posibilidad de agua congelada en la

-Hace más de 40 años, incluso antes de la "Era Apolo", algunos científicos comenzaron a considerar la posibilidad real de que en el piso de algunos cráteres polares de la Luna, donde la sombra látiles. Entre ellos, agua.

-Pero para confirmar aquel viejo pálpito hubo un largo camino: ¿Qué nos puede contar de misiones lunares anteriores a Lcross, empezando por la Clementine, de 1994?

-Clementine hizo las primeras mediciones topográficas de la Luna y confirmó que, realmente,

NAVE MADRE DE LA MISION LCROSS ANALIZANDO LA PLUMA DE ESCOMBROS GENERADA POR EL IMPACTO DE SU COHETE CENTAURO.

ANTHONY COLAPRETE, PRINCIPAL INVESTIGADOR DE LA SONDA LCROSS.

había cráteres polares cuyos pisos estaban total o parcialmente a oscuras...

-No era poco... ¿algo más?

-Sí, mediante estudios de ondas de radar, Clementine descubrió que el fondo del cráter Shackleton, en el Polo Sur de la Luna, era altamente reflectivo a esas ondas. Y eso podía ser el resultado de análisis. De mirar la cosa en su conjunto, en su de la presencia de altas concentraciones de hielo de

> -Un buen comienzo, sin dudas. ¿Y que pasó años más tarde con el Lunar Prospector?

-Esa nave llevaba un espectrómetro de neutrones y con ese instrumento se descubrieron altas concentraciones de hidrógeno en ambos polos lunares. -;Pero esa nave encontró agua?

-No. Lunar Prospector no pudo determinar en qué forma estaba todo ese hidrógeno lunar, si formando parte de agua o bien integrando otros com-

-Otro ladrillo en la pared. Vamos más cerca en el tiempo: poco antes del impacto de Lcross, y con mucha menos prensa, trascendieron algunos resultados de la sonda lunar Chandrayaan-1, de es eterna, podría haber depósitos de materiales vo- la India, que llevaba un instrumento aportado por

> -Sí, Chandrayaan-1 llevaba el Moon Mineralogical Mapper, también llamado M3. Y con ese aparato la nave detectó una muy amplia distribución de oxidrilo (OH) en la Luna y hasta pequeñas cantidades de hielo de agua. El problema es que M3 sólo pudo estudiar lugares iluminados por el Sol, pero no el interior de los cráteres polares.

-Y eso es justamente lo que hizo Lcross. ¿Por qué eligieron el cráter Cabeus como lugar de im-

-Lo elegimos después de considerar una larga lista de factores. Por empezar, las observaciones de Lunar Prospector, en 1998, y del LRO, actualmente en órbita lunar, nos mostraban concentraciones muy altas de hidrógeno en el fondo de Ca-

-Sugerente, por cierto. De paso aclaremos que Cabeus mide unos 100 kilómetros de diámetro y que está a sólo 100 kilómetros del Polo Sur de la

-Cabeus también nos ofrecía una buena chance para que la nube de escombros, provocada por el impacto de Lcross pudiera elevarse y alcanzar la luz solar. Además, ese cráter reunía otros requisitos, como muy bajas temperaturas y piso chato para el impacto.

-Al comienzo hubo cierta decepción con el impacto y con la modesta nube de materiales que se levantó. De hecho, los telescopios terrestres no vieron nada. ¿Qué pasó?

-Sí, la "pluma" del impacto fue menos brillante de lo que esperábamos. Pero no tanto. Lamentablemente, los gráficos y simulaciones previas fueron hechos mucho antes, y por personas ajenas a Lcross. Nosotros intentamos bajar las expectativas, pero poco importó, porque el titular de "bombar-

deo a la Luna" ya circulaba por todas partes y eso

-Aquí en la Argentina pasó más o menos lo mismo. Vamos al grano: ¿cómo detectaron la presencia de agua congelada en la nube de escombros que levantó el impacto?

alimentó falsas expectativas.

-La nave que iba detrás del cohete que se estrelló utilizó dos espectrómetros para estudiar la nube que levantó el impacto, uno infrarrojo y otro ultravioleta y visible. En el caso del infrarrojo, pudimos ver cambios en la absorción de la luz solar que son típicos y únicos del vapor de agua. En el caso del espectrómetro ultravioleta y visible detectamos la presencia de oxidrilo (OH), un producto resultante de la fotólisis del agua. Son dos identificaciones independientes de la presencia de agua.

-Se habló de unos 100 kilos de agua en la "pluma" que produjo el impacto...

-En realidad, un poco más. De todos modos, esa cantidad es tan sólo lo que pudimos medir en el campo de visión de nuestros instrumentos. Además, tampoco sería el total de agua excavada por el impacto, sino apenas el vapor de agua que alcanzó a ser iluminado por luz solar.

-A propósito: ¿a partir de los resultados de

algo así como "cápsulas del tiempo", lugares donde se han ido acumulando materiales volátiles a lo largo de miles de millones de años... -Eso es muy impresionante. -Ciertamente lo es. Porque si logramos entender la cantidad y variedad de todos esos compuestos, incluyendo el hielo de agua, podremos echar

importantes que nos dará esta misión.

te descubrimiento?

Lcross, es posible estimar cuánta agua congelada puede estar atrapada en las regiones polares de la

-Es demasiado temprano para decirlo. Pero ése

-; Cuáles son las implicancias científicas de es-

-Varias. Por empezar, los hallazgos de Lcross

confirman que los cráteres oscuros de la Luna son

es justamente uno de los resultados finales y más

el sistema Tierra-Luna. -Es fascinante de por sí. Pero la existencia de agua congelada en la Luna debe tener su lado "práctico", especialmente para los astronautas de las próximas décadas...

luz sobre la historia y el clima en toda la zona in-

terna del Sistema Solar. Y muy particularmente en

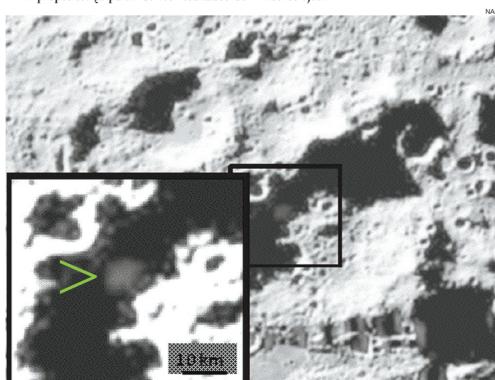
-Así es, estos primeros descubrimientos pueden ser la guía para planear futuras misiones y para permitir una presencia humana extendida en la Luna. Es increíblemente caro y difícil llevar un kilo de agua, o de cualquier cosa hacia la Luna. De hecho, esos costos técnicos y económicos limitan la calidad y cantidad de misiones espaciales...

-Con agua en la Luna, todo sería más fácil...

-Claro, porque las futuras misiones a la Luna van a requerir de la utilización de recursos más allá de la Tierra. Y el agua congelada de la Luna es uno de los recursos que los astronautas podrían utilizar

-Para beber, para extraer oxígeno, para usar hidrógeno como combustible..

-Y también para desarrollar los medios y la confianza que nos permita explorar aún más allá...


-Volviendo a la Luna: ¿Cuál es el próximo paso? ¿La NASA está considerando otra misión de impacto al estilo Lcross?

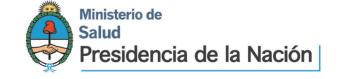
-La verdad es que hacen falta más misiones como Lcross. Sólo hemos tomado una pequeña muestra de un parche de la Luna y no podemos pensar en otro tipo de misiones antes de confirmar la unicidad o no de ese sitio de impacto.

-; Qué otro tipo de misiones?

-Hay varias posibles direcciones hacia donde ir. Una sería enviar un vehículo de descenso que busque agua congelada in situ. También podría ser una misión que tome muestras del suelo lunar y luego las envíe de regreso a la Tierra. En todos los casos, el objetivo final será conocer con mucha mayor precisión la cantidad y distribución, en extensión y profundidad, del hielo de la Luna.

-Gracias Anthony, seguramente, esta noche, muchos saldremos a mirar y a pensar la Luna con

NUBE DE ESCOMBROS DONDE SE DETECTO AGUA, GENERADA POR EL IMPACTO DE LCROSS.



Sin mosquito, no hay dengue. Por eso, hoy tenemos que destruir sus larvas, eliminando los lugares donde se crían. Tirando o dando vuelta objetos en desuso que acumulen agua, como gomas de autos, tapas y botellas, cacharros o baldes. También, cambiando seguido el agua de floreros y bebederos de animales

y tapando siempre los recipientes donde se junte agua para consumo.

Además, permití que los agentes municipales entren a tu casa para descacharrar y fumigar.

CON PREVENCIÓN, AL DENGUE LE GANAMOS ENTRE TODOS.

REDES 28 TOTAL PROPERTY OF THE CONTROL OF THE CONT

REDES 27 / REDES 28

Revista de estudios sociales de la ciencia. Instituto de Estudios Sociales de la Ciencia y la Tecnología Universidad Nacional de Quilmes.

Reseñar una revista periódica como *Redes* es decir todas las veces prácticamente lo mismo. Se trata de la mejor revista de estudios de la ciencia y la tecnología que se publica por estos lares, surge del Instituto de Estudios Sociales de la Ciencia y la Tecnología de la Universidad Nacional de Quilmes, y la dirige Pablo Kreimer, el mayor especialista en la materia del país. ¿Qué más? ¿Hacer una lista de artículos y nombres? No, por favor.

LEONARDO MOLEDO

www.leonardomoledo.blogspot.com

AGENDA CIENTIFICA

BAJO EL CIELO DE IMAGINARIO

Hasta hoy hay tiempo para participar de las charlas y talleres sobre astronomía que el Museo Interactivo Imaginario, de la Universidad Nacional de General Sarmiento, la Asociación EnDiAs y el Museo Ciudad de San Fernando organizan –bajo el auspicio de la Asociación de Profesores de Física de la Argentina– en el Marco del Proyecto Bajo el cielo de Imaginario, con motivo de festejarse el Año Internacional de la Astronomía 2009, que coincide con el 400 aniversario de las primeras observaciones realizadas con telescopio por Galileo Galilei y con la publicación de Astronomía Nova, de Johannes Kepler.

La charla sobre astrofotografía tendrá lugar de 16 a 17.30 y estará a cargo del profesor Néstor Olivieri y Horacio Salomone, y, cerrando el ciclo de actividades, de 18.30 a 22.30, se realizará el II Encuentro de Fotografía Astronómica Safari Fotográfico Astronómico: un encuentro pensado para personas de todas las edades. La cita es en Museo Interactivo de Ciencia, Tecnología y Sociedad "Imaginario", en Roca 850, esquina Muñoz, San Miguel.

futuro@pagina12.com.ar

La última Era de Hielo enfrió todo en tan sólo unos meses

Hace 13 mil años, un lago descomunal que se había formado en Canadá, producto de los deshielos, se desbordó y la inundación que produjo en la Corriente del Golfo afectó el clima de toda Norteamérica y de Europa, produciendo una edad de hielo en tan sólo unos meses. Y las consiguientes extinciones, incluso de humanos.

POR MARTIN CAGLIANI

l terreno donde hoy está Canadá era muy diferente hace 13 mil años. Al norte de la región de los Grandes Lagos existía un lago descomunal llamado Agassiz. Tan grande como la provincia de Buenos Aires: se cree que tendría entre 300 y 400 mil kilómetros cuadrados.

Ahora, si queremos saber cómo llegó a formarse este lago tan grande como un mar, tenemos que retroceder en el tiempo unos cuatro mil años. Por esos tiempos era el período de máximo frío de la última edad de hielo, que ya venía enfriando al mundo desde hacía decenas de miles de años, y casi todo Canadá era un inmenso bloque de hielo continental. Pero desde ese pico llamado Máximo Glacial de hace 18 mil años, el frío fue menguando cada vez más.

Ese bloque de hielo de escala continental se fue derritiendo a medida que aumentaba la temperatura global. Toda esa agua de deshielo se fue acumulando en una cuenca gigantesca hasta formar este lago Agassiz.

CORRIENTES MARINAS

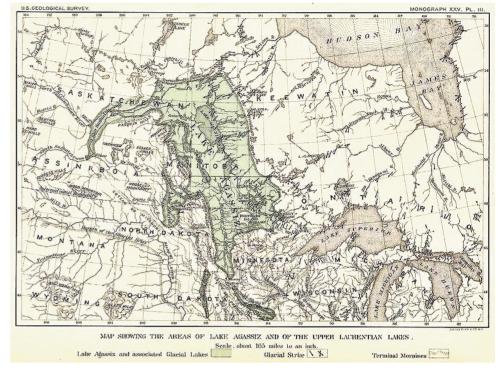
Y FRIOS REPENTINOS

Pero llegó un momento en que algunos de los bordes de ese inmenso lago cedieron. Se liberó así una cantidad de agua muy grande que escurrió hacia el Golfo de México, al sur, y también hacia el este, al Océano Atlántico. Semejante volumen de agua dulce inyectada en las grandes corrientes marinas hicieron que se diluyese la salinidad del océano y que las corrientes cálidas como la del Golfo se detuvieran.

Los efectos fueron catastróficos, y se notaron en apenas unos meses, con una mini edad de hielo. Este evento ocurrió exactamente hace unos 12.900 años y se lo llama Dryas reciente. ¿Por qué

Quien haya visto la película *El día después de mañana* tendrá un vago recuerdo de cómo un cambio en la dirección o en la temperatura de las corrientes marinas puede destruir el mundo. La película es ficción, pero no tan alejada de la realidad.

Las corrientes marinas son movimientos continuos de grandes masas de agua causadas principalmente por el movimiento de rotación de la Tierra, por los vientos dominantes, y por la forma de los continentes.


Una de las corrientes más beneficiosas para nosotros los humanos es la llamada Corriente del Golfo. Lleva grandes cantidades de aguas cálidas desde el Golfo de México hasta el norte del Océano Atlántico.

Gracias a esta corriente Europa goza de un clima cálido y no muy árido que de otra forma no podría aprovechar, ya que están en una latitud alta, por lo que debería hacer más frío allí.

CUANDO IRLANDA SE MUDO AL ARTICO

Investigadores de la Universidad de Saskatchewan, en Canadá, analizaron capas y capas del fondo del lago Lough Monreagh, en el oeste de Irlanda. Lo hicieron con una nueva técnica que se vale de robots para cortar capas de apenas un milímetro de espesor. ¿Y esto para qué les sirve?

Así pueden conocer el clima que imperaba en la zona, desde millones de años atrás hasta la fecha, con un grado de detalle tal que en vez de tener una escala en siglos, se pasa a una escala de uno a tres meses. En cada muestra tomada pueden analizar la cantidad de isótopos de carbono para conocer cuánta vida había en el lago, y los isótopos de oxígeno para darse una idea de la temperatura y las lluvias.

SE CREE QUE EL LAGO AGASSIZ TENDRIA ENTRE 300 Y 400 MIL KILOMETROS CUADRADOS.

Hasta la fecha, numerosos estudios de este tipo se habían realizado en los fondos oceánicos y en las capas de hielo de Groenlandia, y todos apuntaban a que la mini edad de hielo, o el Dryas reciente, había ocurrido hace 12.900 años, pero en el transcurso de algunas décadas. O sea que el frío había ido llegando lentamente.

Pero estudios realizados por otros científicos canadienses en la última década demuestran que el lago Agassiz derramó sus aguas y cambió las corrientes en un evento que ocurrió apenas en el transcurso de algunos meses.

Estos datos geológicos son respaldados ahora por los del lago irlandés, que demuestra que en sólo unos meses la productividad del lago se detuvo por completo. En palabras de los investigadores es como si se hubiese movido a Irlanda hacia Svarbard, en el Artico.

LA MAGNITUD DEL CAMBIO

Este cambio climático que ocurrió en el Hemisferio Norte y que sucedió en un período de apenas unos meses, luego se mantuvo durante 1300 años. Fue el último gran frío que sufrió nuestro planeta, pero al contrario de otras Eras de Hielo o Glaciaciones, ésta fue repentina. Ningún tipo de vida puede adaptarse a un cambio tan drástico en el clima.

Como se dijo, en una zona como Irlanda se pasó de un clima no muy diferente del actual a otro similar al del Artico. Esto tuvo que generar unos cambios muy grandes en la flora y la fauna de América del Norte y de Europa, y dentro de esa fauna estaban nuestros antepasados humanos.

La vegetación no se pudo mover, no tuvo más opción que adaptarse al clima, lo que le habrá llevado varios siglos. Los animales podían migrar, pero con un cambio tan repentino no habría migración que alcanzase.

Tan sólo las aves podrían haber recorrido los miles de kilómetros necesarios para huir del frío. Pero sin tener la costumbre, tampoco lo habrían hecho

EXTINCIONES HUMANAS

Todo esto comienza a encajar como un tetris histórico, ya que se conocía en el registro arqueológico la desaparición de poblaciones humanas tanto en el Norte de América, como en Europa.

En el registro arqueológico del Viejo Mundo se ve el abandono de los sitios de vivienda de los cazadores recolectores del norte, y posiblemente se hayan extinguido las poblaciones humanas que vivían en zonas alejadas, como las islas Británicas.

Pero una de las extinciones más notorias de la arqueología es la de los primeros pobladores de América.

Los seres humanos llegaron a América desde Asia hace unos 30 mil años, y para la época de esta mini Era de Hielo repentina, ya había personas poblando la Patagonia. En lo que hoy es el este de los Estados Unidos, existía una población conocida como cultura Clovis.

Se la llama así por el primer yacimiento donde se descubrieron las herramientas líticas que los caracterizan, que eran muy elaboradas. Pero para el año 12.900 antes del presente, esta cultura se esfuma del registro arqueológico.

Hubo muchas teorías acerca de las causas de la desaparición, incluso una que hoy en día tiene algunos adeptos aboga a favor de un meteorito que explotó en la atmósfera de la zona bombardeando toda la región. Otros dijeron que estaban tan especializados en la caza de la megafauna americana que cuando ésta desapareció, también lo hicieron los Clovis.

Pero lo cierto es que el repliegue humano en América del Norte es muy notorio y coincide perfectamente con la época del deshielo del lago Agassiz. Esto no quiere decir que hayan sido barridos por la inundación, ya que no se cree que ésta haya sido catastrófica. Sino que se vieron afectados, junto con la fauna y flora de la región, por el cambio climático drástico ocurrido luego del derrame del lago.

Pasaron muchos siglos antes de que los humanos volviesen a colonizar la región, y se nota en el registro arqueológico que quienes lo hicieron eran diferentes de los Clovis, tanto en su forma física como en la tecnología lítica que utilizaban.

Por esta razón se cree estos primeros pobladores americanos, los más famosos, fueron una más de las poblaciones humanas que se extinguieron a lo largo del mundo por cambios climáticos. Otra de ellas es una especie humana pariente nuestra, los neandertales.

Estos estudios nos demuestran la importancia de prestar atención al cambio climático que hemos producido en los últimos siglos, y que podrían desencadenar un evento como este Dryas reciente, ya que si el agua dulce de los hielos continentales de Groenlandia se derrite hacia el océano no tenemos idea de lo que podría llegar a ocurrir.